If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x-42=0
a = 2; b = -4; c = -42;
Δ = b2-4ac
Δ = -42-4·2·(-42)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{22}}{2*2}=\frac{4-4\sqrt{22}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{22}}{2*2}=\frac{4+4\sqrt{22}}{4} $
| 10+x+5=30 | | 3x^2+24x=10 | | 8x+14=2(-3x+12) | | c+2/3=4;c | | 3+(6/x)=8 | | 3x^2+36=-60 | | 6x=2(-3x-5)=154 | | 21+3x=18+x | | 625^2n-2=1/5 | | 9+3x=36+2x | | x/7x=9 | | 4x+8-2x=3(x+4) | | 5··2=3x;x | | 2(3x-3)-2=24 | | 1/2=-5/18h | | 7··4=1+m;m | | x^2+3x+4=2x+6 | | ··4=1+m;m | | 5r2–8r+5=0 | | 3/4x+9=6/4 | | 44+(x+20)3x=180 | | 39/2+b=18 | | 94=7x+5 | | 3(x+5=39 | | 7··31x=3;x | | 3x−15+5x-23=90 | | -4y=12/5 | | 8x-2=-2+9+7x | | 3b+5+b=25 | | 3x−15=90 | | 12=n/6+5 | | -3x-7(29+9x)=19 |